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Abstract: Acute myocardial infarction (AMI) and heart failure (HF) that often follows are the leading causes of death and 
disability worldwide, exerting huge burdens on healthcare and economic resources. Therefore, new therapeutic approaches 
are required to reduce myocardial injury, improve cardiac repair, and prevent adverse myocardial remodeling, and the 
consequent HF. The death of cardiomyocytes (CMs) has been detected in the heart at all stages of AMI. In this context, 
autophagy, a catabolic process for the engulfment, degradation, and recycling of dysfunctional or damaged cellular 
components, plays a crucial role in CMs homeostasis, making it a key process in AMI and the development of HF. Autophagy 
induced by ischemia confers cardioprotection via the activation of adenosine monophosphate-activated protein kinase and 
inhibition of mTOR pathway, whereas further amplification of autophagy during reperfusion is maladaptive and exacerbates 
myocardial injury. As such, strategies that can modulate and normalize the autophagic response could prevent irreversible 
loss of cardiomyocytes in AMI and HF, thereby conferring cardioprotection. Here, we summarize the role of autophagy in AMI 
and HF as a potential target for cardioprotection, highlighting studies that focus on the development of new therapies that 
take advantage of autophagy modulation to prevent or delay the pathogenesis of AMI and progression to HF.
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Introduction  
Acute myocardial infarction (AMI) and heart failure (HF) 
contribute to high morbidity and mortality in terms of global 
health (Mozaffarian et al., 2016; Roth et al., 2017). Timely 
restoration of coronary flow of the occluded coronary artery 
with thrombolytic therapy and/or percutaneous coronary 
intervention (PCI) is the treatment of choice in AMI patients 
(Ginks et al., 1972; Yellon and Hausenloy, 2007; Heusch, 
2020). However, clinical outcomes following restoration of 
blood flow to ischemic tissue in AMI need to be improved. 
The reperfusion process itself begets cardiomyocyte (CM) 
death through a combination of oxidative stress, Ca2+ overload, 
inflammation and mitochondrial dysfunction – a phenomenon 
called acute myocardial ischemia-reperfusion injury (IRI) 
(Yellon and Hausenloy, 2007; Szummer et al., 2017; Ong et al., 
2018; Heusch, 2020).
     CM death is an important contributor to HF following 
AMI, and represents a challenge for researchers to preserve 

the viability of CMs. In this sense, autophagy has emerged as a 
mechanism enabling CMs to eliminate redundant and damaged 
proteins (Reimer et al., 1993; Nishida et al., 2008; Kanamori 
et al., 2011; Gao et al., 2020a). The tight regulation of protein 
turnover is essential to prevent the irreversible loss of CMs and 
maintain cellular homeostasis in AMI and HF (Sciarretta et al., 
2014; Farah et al., 2020). In this review, we will focus on the 
importance of autophagy in cardioprotection, and highlight the 
potential therapeutic approaches that target autophagy to reduce 
myocardial injury and prevent adverse myocardial remodeling 
in AMI patients at risk of developing HF.

Autophagy and mitophagy
Autophagy is a catabolic process describing the engulfment, 
degradation, and recycling of dysfunctional or damaged cellular 
components, and plays a crucial role in maintaining CM 
homeostasis. Given its role in reducing CM stress, autophagy 
generally functions as a pro-survival process. However, some 
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evidence suggests that, under certain circumstances, autophagy 
may beget cell death. In the context of acute myocardial 
ischemia-reperfusion injury (IRI), it remains unclear if 
autophagy-dependent cell death results from excessive 
autophagy or a qualitative change in the nature of the autophagy 
process itself (Galluzzi et al., 2018). According to the pattern of 
cargo delivery to the lysosome and its physiological function, 
autophagy has been classified into different types including 
microautophagy, chaperone-mediated autophagy (CMA) 
and macroautophagy. The most extensively studied form of 
autophagy is macroautophagy, which degrades both intracellular 
organelles and cytoplasmic proteins (Ma et al., 2015). In this 
article, the term autophagy refers to macroautophagy, unless 
otherwise specified.
     Autophagy is regulated by specific autophagy (Atg) 
genes, which encode for proteins that regulate the initiation 
and formation of autophagosomes, as well as the fusion of 
autophagosomes with lysosomes to form autolysosomes. The 
process of autophagy consists of at least four steps: 1) induction 
and nucleation, 2) formation and maturation, 3) fusion, and 4) 
degradation (Figure 1).

 Induction and nucleation 
The induction of autophagosome formation is regulated by 
the macromolecular complex unc51-like kinase 1 (Ulk1), 
comprising Atg13, Ulk1/2 (Jung et al., 2009), RCB1-inducible 
coiled-coil 1/focal adhesion kinase family interacting protein 
of 200 kDa (RB1CC1/FIP200) (Ganley et al., 2009) and 
chromosome 12 open readin gframe 44 (C12orf44)/Atg101 
(Hosokawa et al., 2009). The most dominant pathway of 
autophagy in CMs is the mammalian target of rapamycin 
(mTOR) pathway. mTOR is a serine/threonine kinase that acts 
through two distinct multiprotein complexes. When mTOR 
is complex-associated, it phosphorylates Ulk1/2 and Atg13, 
inactivating them. However, when CMs are treated with 
rapamycin, a classic autophagy inducer, mTOR dissociates from 
the induction complex, resulting in dephosphorylation of Ulk1/2 
and Atg13, leading to the induction of autophagy (Jung et al., 
2009). During autophagosome formation, the Ulk complex 
activates a macromolecular protein assembly consisting of 
Beclin-1, Atg14L, vacuolar protein sorting (Vps) 34, and Vps15 
(Furuya et al., 2005; Yan et al., 2009). Ulk1 phosphorylates 
Beclin-1 at Ser14, thereby activating the Vps34 complex, which 
is critical for the formation of autophagosome through the 
formation of phosphatidyl inositol 3-phosphate (PIP3) (Itakura 
and Mizushima, 2010).

Formation and maturation 
In mammals, there are two ubiquitin-like (UBL) systems that 
contribute to the expansion of the phagophore. The first UBL 
is the Atg12-Atg5 complex, which promotes the elongation of 
the maturating phagophore through interaction with Atg16 that 
acts as an E3-like enzyme to promote lipidation of microtubule-
associated protein 1 light chain 3 (LC3); the second UBL 
system involves phagosome expansion (Mizushima et al., 
2003). The conjugated LC3, called LC3-II, is incorporated 
into the phagophore, mediating its final maturation into an 
autophagosome. The conjugation and subsequent deconjugation 
of LC3 from phosphatidylethanolamines are regulated by the 
cysteine protease, Atg4. Subsequently, the autophagosome fuses 
with the lysosome to form an autophagolysosome that digests 
macromolecules by action of lysosomal hydrolases. Once 
digestion is completed, the degraded components are recycled to 
the cytoplasm to regenerate the cellular building blocks (Kabeya 
et al., 2000). The expanding phagophore must eventually mature 
and close to form a complete autophagosome, which traffics to 
and fuses with a lysosome, forming an autolysosome.

 Fusion
After i ts  formation, the autophagosome undergoes a 
stepwise maturation process, including fusion events with 
multivesicular endosomes and lysosomes. Fusion with 
endosomal compartments depends on Vps4/suppressor of 
K+ transport growth defect 1 (SKD1) and Rab11 (Nara et al., 
2002). The fusion with lysosomes necessary for the complete 
degradation of segregated cytoplasm depends on microtubules, 
the microtubule motor dynein, the small GTP-binding protein 
RAB7, components of HOPS (homotypic fusion and vacuole 
protein sorting) complex (Itakura et al., 2012), VTI1B 
(Atlashkin et al., 2003), (Jager et al., 2004; Szatmari and 
Sass, 2014) and the lysosomal membrane protein lysosome 
associated membrane protein 2 (LAMP2) (Eskelinen, 2005). 
After fusion, the cytosolic cargo is broken down by the acidic 
lysosomal hydrolases in the autophagolysosome. Agents such as 
the anti-malarial drug chloroquine (CQ) and its derivatives are 
used experimentally to inhibit autophagy (Mauthe et al., 2018). 
Attenuation of the excessive increase in autophagy during 
reperfusion could a priori be expected to confer protection, 
highlighting chloroquine as a potential therapeutic strategy to 
limit IRI (Chaanine et al., 2015). However, CQ administration 
(60 mg/kg, i.p 1 h before ischemia and daily chloroquine 
injection for up to 2 days) reduced IRI injury at 0.5 and 6 h, 
but aggravated liver injury at 24 and 48 h after reperfusion 
(Fang et al., 2013). In the early phase, the protective effect of 
CQ treatment was associated with a reduction of inflammatory 
cytokine production. In contrast, in the late phase of reperfusion, 
chloroquine treatment was associated with autophagy inhibition 
and induction of apoptosis. Chloroquine could be expected 
to be protective in other conditions that enhance autophagy 
flux, such as cardiac hypertrophy, and it also appears to confer 
protection against IRI in diabetic cardiomyopathy (Yuan et 
al., 2016; Jeong et al., 2018). There are many case reports of 
rapidly developing cardiovascular effects following intoxication 
by CQ/hydrochloroquine (HCQ), ranging from bradycardia 
and hypotension to eventual cardiac arrest (Mubagwa, 2020). 
Consequently, this dual effect should be considered in future 
clinical trials where CQ or HCQ could be used in the treatment 
of myocardial IRI.

Degradation
Little is known about what happens during degradation. 
The breakdown within the vacuole allows recycling of the 
hydrolyzed cargo. Efficient degradation is dependent on 
proteinase B, lumenal acidification, and the cytoplasm to 
vacuole targeting protein 17 (Cvt17) protein, a candidate lipase 
that may degrade the autophagic body (Kim et al., 1997). 

Mitophagy
The selective removal of damaged mitochondria by autophagy, 
termed mitophagy, shares most of the molecular machinery of 
autophagosome formation but also possesses unique molecular 
mechanisms, including the PTEN-induced putative protein 
kinase1 (PINK1)/E3 ubiquitin ligase Parkin pathway (Lazarou 
et al., 2015; Saito and Sadoshima, 2015). When mitochondria 
are depolarized, PINK1 is stabilized and accumulates on the 
outer mitochondrial membrane (OMM), where it phosphorylates 
mitofusin 2 (Mfn2) at Thr111 and Ser442, which in turn induces 
Parkin translocation to the OMM. Parkin then ubiquitinates 
OMM proteins, marking the depolarized mitochondria for 
autophagosomal engulfment. The autophagosome then fuses 
with the lysosome, leading to degradation of the mitochondria 
(Lazarou et al., 2015).  
     This highlights the role of Mfn2, a mitochondrial fusion 
protein, as a receptor for Parkin. In addition to Parkin 
recruitment, Mfn2 has been shown to play an essential role in 
the fusion of autophagosomes with lysosomes. Zhao et al. (2012)  



REVIEW ARTICLE

Conditioning Medicine 2020 | www.conditionmed.org

Conditioning Medicine | 2020, 3(6):264-273

266

showed that Mfn2 mediates the maturation of autophagy in the 
heart by serving as an adaptor protein recruiting RAB7 (the 
small GTP-binding protein needed for the final maturation of 
late autophagic vacuoles) to the autophagosomal membrane 
(Yoo and Jung, 2018; Hernandez-Resendiz et al., 2020). 

Autophagy in acute myocardial ischemia-reperfusion injury
Autophagy can either enhance survival or accelerate CMs 
death. While several studies support the notion that enhanced 
autophagy is cardioprotective, there are also substantial 
reports that support the hypothesis that increased autophagy 
is detrimental to CMs (Davidson et al., 2020). Nonetheless, 
autophagy can be activated in prolonged ischemia, acute IRI, 
and HF (Zhu et al., 2007; Tannous et al., 2008).
     Under basal conditions, Ulk1 is phosphorylated at Ser757 
by mTOR1, leading to the inhibition of autophagosome 
formation. In response to ischemia, the activity of mTOR is 
suppressed, and autophagy becomes activated (Nishida et al., 
2008). Autophagy activation has been observed within 20 
min of ischemia in in vivo murine hearts (Matsui et al., 2007). 
During myocardial ischemia, a rapid drop in ATP levels (i.e. 
increased AMP/ATP ratio) and glucose deprivation (Zhang et 
al., 2017) lead to the activation of adenosine monophosphate-
activated protein kinase (AMPK) (Matsui et al., 2007). AMPK 
phosphorylates and activates tuberous sclerosis complex 1/2 
(TSC1/2) and regulatory associated protein of mTOR (Raptor), 
which in turn inhibits Ras, an activator of mTOR. Beclin-1 and 
Atg5, members of the classical autophagy pathway and essential 
for autophagosome formation, are found to increase in ischemic 
hearts (Gustafsson and Gottlieb, 2009). Myocardial ischemia 
also inactivates the GTP-binding protein Rheb, a protein 
that promotes cell survival and mediates cellular response to 
energy derivation. Consequently, inactivation of Ras homolog 
enriched in brain (Rheb) protects CMs during ischemia through 
activation of autophagy (Sciarretta et al., 2012). In a direct way, 
AMPK disassociates Ulk1 from mTOR by phosphorylating 
Ulk1 at Ser313 and Ser777 (Kim and Guan, 2011; Kim et 
al., 2011; Laker et al., 2017). Another pathway that triggers 
autophagy is through the induction of Bcl2-interacting protein 
3 (Bnip3) via hypoxia and acidosis. Overexpression of Bnip3 
in adult CMs has been associated with a significant increase in 
autophagy activity. Additionally, as a pro-apoptotic member of 
the Bcl-2 family, Bnip3 has been involved in upregulation of 
autophagy in myocardial reperfusion (Hamacher-Brady et al., 
2006). Although the precise mechanism through which Bnip3 

induces autophagy is poorly understood, it has been proposed 
that Bnip3 might compromise the integrity of mitochondria 
such that autophagy is initiated to dispose of the damaged 
organelles (Figure 2).
     Reactive oxygen species (ROS) generated during ischemia 
can also contribute to autophagy activation. Hydrogen peroxide 
(H2O2) regulates autophagosome formation through activation 
of atg4 by oxidation of an essential cysteine residue, which 
leads to accumulation of LC3-II on the phagophore membrane 
and the formation of autophagosomes (Scherz-Shouval et al., 
2007). During acute myocardial IRI, ROS damages organelles, 
cytosolic proteins, and causes lipid peroxidation in the 
mitochondria, all of which exacerbate autophagy. Thioredoxin-
interacting protein (TXNIP), a pro-oxidative molecule, is 
known to contribute to IRI. TXNIP has been shown to increase 
autophagosome formation but inhibits autophagosome clearance 
during myocardial reperfusion (Penna et al., 2013; Gao et al., 
2020a).
     Another potent inducer of autophagy during ischemia is 
elevated intracellular Ca2+ due to the sodium-calcium exchanger 
during prolonged ischemia (Karmazyn and Moffat, 1993; 
Hoyer-Hansen et al., 2007). AMPK can be phosphorylated and 
activated by tumour suppressor liver kinase B1 (LKB1) at low 
energy levels and by Ca2+/calmodulin-dependent protein kinase 
kinase-β (CAMKK-β) in response to increased cytosolic Ca2+ 
(Hawley et al., 2005). Another critical molecule that is activated 
by low oxygen conditions is hypoxia-inducible factor 1 alpha 
(HIF-1α). In vivo studies have shown that HIF-1α mediates 
mitochondrial autophagy as an adaptive metabolic response 
under hypoxia conditions (Zhang et al., 2008); however, the 
correlation between HIF-1α and autophagy during myocardial 
ischemia has not been demonstrated.
     Autophagy has been reported to be further enhanced during 
myocardial reperfusion and is associated with the accumulation 
of autophagosomes. Impaired autophagosome clearance 
mediated in part due to ROS-induced downregulation of 
LAMP2  and upregulation of Beclin-1 contributes to increased 
CM death (Tanaka et al., 2000; Ma et al., 2012). Since AMPK 
is rapidly inactivated during reperfusion, it is unlikely that 
the increased autophagy seen in reperfusion is mediated by 
AMPK-dependent mechanism. In the study by Matsui et al. 
(2008) reperfusion induced a 7-fold increase in autophagosome 
abundance despite the absence of further AMPK activation or 
mTOR1 inhibition, suggesting that autophagosome formation 

Figure 1. Schematic diagram of phases of autophagy in cardiomyocytes.  (1) Induction and nucleation, (2) formation and maturation, (3) 
fusion, and (4) degradation. Autophagy-activating kinase 1, ULK1; protein of 200kDa, FIP200; autophagy-related protein, Atg; endoplasmic 
reticular, ER; phosphatidylethanolamine, PE; phosphatidylinositol 3-phosphate, PIP3; 1 light chain 3, LC3; adenosine monophosphate, AMP; 
adenosine triphosphate, ATP; mammalian target of rapamycin, mTOR.
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during reperfusion is mediated by Beclin-1-dependent 
mechanisms. Importantly, it has been shown that Beclin-1 
increases within 30 min of reperfusion (Matsunaga et al., 
2009), highlighting the importance of Beclin-1 in mediating the 
autophagy process during myocardial reperfusion. Apoptosis 
and the size of the myocardial infarct during reperfusion 
are significantly attenuated in heterozygous Beclin-1+/- 
mice, suggesting that autophagy during reperfusion may be 
detrimental (Matsui et al., 2007). Conversely, depletion of 
Beclin-1 by siRNA transfection attenuated autophagy activity 
in CM during reperfusion (Valentim et al., 2006). In vitro 
studies have also shown that ROS induces autophagy through 
Beclin-1 overexpression during reperfusion (Hariharan et al., 
2011). Additionally, H2O2 produced (Matsui et al., 2007) during 
reperfusion could oxidize the Atg4 cysteine contributing to 
LC3 lipidation and autophagy initiation (Scherz-Shouval et al., 
2007). It is also likely that the deleterious effects of autophagy 
may be attributed to the crosstalk between autophagy and 
apoptosis. Beclin-1 mediated autophagy activation during 
reperfusion is associated with Bcl-2 downregulation (Brady 
et al., 2007), and the decreased expression of Bcl-2 could 
contribute to apoptotic cell death.
Autophagy in heart failure
Large myocardial infarcts can lead to HF due to adverse 
remodeling of the left ventricle (LV). This is characterized 
by LV dilatation and diminished cardiac contractile function. 
Adverse cardiac remodeling refers to the structural cardiac 
alterations that occur in response to hemodynamic load and 
cardiac injury in association with neurohormonal activation 
(Cohn et al., 2000). Dead and dying cardiomyocytes showing 
characteristics of autophagy have been reported in HF patients. 
Analysis of hearts from patients with end-stage HF show CMs 
with cytoplasm replaced almost entirely with autophagosomes 
(Takemura et al., 2006), suggesting autophagic cell death to 
be the most prominent mechanism contributing to cell death  
in HF (Knaapen et al., 2001; Kostin et al., 2003). It is still 
undetermined whether an abnormal increase in autophagy 
causes CM death in animal models of HF. It is possible 
that autophagic CM death is simply the result of a failed 
compensatory mechanism or dysfunction of the autophagy 

process as seen in the HF associated with Danon disease (a 
genetic defect in the lysosomal protein LAMP2) (Nishino et 
al., 2000; Tanaka et al., 2000). Recently, Akazawa et al. (2004) 
reported that autophagic CM death plays a pathogenic role 
in a mouse model of diphtheria toxin-induced HF. In a study 
where HF was induced in rats using an established model of 
Adriamycin administration, abundant autophagosomes were 
detected. The administration of 3-methyladenin (3MA), an 
autophagy inhibitor, strongly suppressed the formation of 
autophagosomes, reduced mitochondrial injury, and inhibited 
autophagic CM death (Lu et al., 2009). Similarly, four weeks 
after transverse aortic constriction (TAC), Atg5-deficient mice 
showed significant increase in LV dimensions, decreased 
fractional shortening, accumulation of ubiquitinated proteins, 
and increased CM death (Nakai et al., 2007).

Targeting autophagy for cardioprotection
Acute myocardial ischemia-reperfusion injury
Several reports support the notion that the enhancement of 
autophagy is cardioprotective. On the other hand, there are 
studies showing that autophagy may exacerbate myocardial 
injury. Matsui et al. (2008) have shown that, in the case 
of myocardial ischemia, autophagy led to cell survival, 
whereas excessive autophagy could promote CM death 
during reperfusion. The AMPK-mTOR pathway is regarded 
as an important regulator of autophagy in response to acute 
myocardial IRI, although AMPK is no longer activated during 
reperfusion (Matsui et al., 2007). With increasing evidence 
verifying the cardioprotective effects of AMPK-mediated 
autophagy during reperfusion, multiple pharmacological 
drugs targeting AMPK activation have been evaluated as 
potential therapeutic agents. The numerous agents that 
promote myocardial autophagy during reperfusion identified 
include the classic autophagy inducer, rapamycin (Wu et 
al., 2014), metformin (Solskov et al., 2008), some Chinese 
herbs with cardioprotective effects, and therapies like 
ischemic postconditioning (Hao et al., 2017), remote ischemic 
postconditioning (Han et al., 2014), electroacupuncture (Xiao et 
al., 2020) and engineered nanoparticles (Fu et al., 2018).
     Wang et al. (2015) demonstrated that rapamycin exerts 

F ig u r e  2 . S ig n a l l in g  r e g u la t io n  o f  a u t o p h a g y  d u r in g  a c u t e  m y o c a r d ia l  IR I  a n d  p o t e n t ia l  c a r d io p r o t e c t iv e  t h e r a p ie s . (A ) Is c h e m ia  in c r e a s e s  t h e  A M P /A T P  r a t io  a n d  
a c t iv a t e s  A M P K . A M P K  h a s  a  d u a l  a c t io n  t o  p r o m o t e  a u t o p h a g y  v ia  in h ib i t io n  o f  m T O R  a n d  a c t iv a t io n  o f  U lk 1  v ia  p h o s p h o r y la t io n  a t  S e r  3 7 7  a n d  S e r  7 7 7 . A M P K  
in d i r e c t ly  in h ib i t s  m T O R  v ia  i t s  p h o s p h o r y la t io n  a t  S e r  7 2 2  a n d  S e r  7 9 2 . (B ) In  c o n t r a s t , d u r in g  r e p e r f u s io n , a c t iv a t io n  o f  A M P K  i s  n o  lo n g e r  o b s e r v e d . In s t e a d , 
a u t o p h a g o s o m e  fo rm a t io n  d u r in g  r e p e r f u s io n  i s  m e d ia t e d  b y  B e c l in -1 -d e p e n d e n t  m e c h a n is m s . 
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a strong cardioprotective effect against IRI in CMs, with 
rapamycin inducing cardioprotection through autophagy 
activation via the PI3K/Akt signalling pathway. Similarly, 
in vivo and in vitro experiments have shown that metformin 
administration reduced infarct size and attenuated left 
ventricular post-AMI dysfunction through the induction 
of AMPK phosphorylation during reperfusion (Solskov et 
al., 2008; Gundewar et al., 2009; Wang et al., 2019). It has 
also been described that pramipexole (PPX), an important 
L-DOPA treatment for Parkinson’s disease (Frampton, 
2014), induced cardioprotection through AMPK activation 
following myocardial IRI (Mo et al., 2016). Mesenchymal 
stem cells (MSCs), a type of multipotent progenitor cell, also 
improved cardiac function through autophagy activation during 
reperfusion (Pfister et al., 2014). MSC-derived exosomes are 
able to enhance autophagy and reduce the extent of myocardial 
infarction through AMPK/mTOR1 and Akt/mTOR signalling 
(Liu et al., 2017). Geniposide (GP), an extract from a traditional 
Chinese herb Gardenia jasminoides, reduced autophagosome 
accumulation and protected against IRI through Akt/mTOR 
signalling activation (Luo et al., 2020). Coenzyme Q10 
(CoQ10), which is structurally similar to vitamin E and vitamin 
K, has beneficial effects in the prevention and treatment of 
acute myocardial IRI and HF. Liang et al. (2017) demonstrated 
that CoQ10 preconditioning (3 days before ischemia) reduced 
IRI and improved cardiac function by upregulation of Beclin-1, 
ATG5, and LC3-II to LC3-I ratio. The cell-permeable Tat-
Beclin 1 has been shown to promote cell survival and CM 
autophagy in vivo (Shirakabe et al., 2016). Histone deacetylases 
(HDACs) inhibition has been shown to increase autophagy flux 
in the border zone, where active cell death is taking place. The 

FDA-approved HDAC inhibitor, superoylanilide hydroxamic 
acid (SAHA), reduced myocardial infarct size in large animal 
models (Xie et al., 2014). Remote ischemic postconditioning 
(three cycles of 5 min single hindlimb ischemia followed 
by 5 min reperfusion) induced cardioprotection through the 
upregulation of myocardial autophagy, and has been shown 
to induce the upregulation of LC3-II/LC3-I ratio and Beclin-1 
level, and downregulation of p62 3 h after reperfusion, 
demonstrating that autophagy is activated at the early stage of 
reperfusion in an IRI murine in vivo model (Han et al., 2014). 
However, Kis et al. (2003) demonstrated that administration 
of mTOR inhibitors before the onset of ischemia diminished 
the cardioprotective effect of preconditioning. In contrast to 
this study, the administration of RAD, an mTOR inhibitor, 
after ischemia, as is the case in clinical settings, prevented LV 
remodeling and limited infarct size (Buss et al., 2009).
     E lec t roacupunc tu re  (EA)  p recond i t ion ing  has 
cardioprotective effects against IRI by modulating the mTOR/
Ulk1 pathway (Xiao et al., 2020). Visnagin, which is extracted 
from Ammi visnaga, has been evaluated as a cardioprotective 
agent (Fu et al., 2018). Engineered nanoparticles (NPs) have 
been mass-produced and widely applied to the development 
of nanotechnology and material science (Ong et al., 2017). 
Fu et al. (2018) encapsulated visnagin in NIPAAm-MAA 
(N-isopropylacrylamide – methacrylic acid) nanoparticles 
(NP-visnagin) and injected them in an IRI rat model. The NP-
visnagin specifically targeted the IRI myocardium through the 
induction of autophagy and the inhibition of apoptosis (Fu et 
al., 2018). The protective effect of NP-visnagin could be related 
to the aryl hydrocarbon receptor (AHR), an upstream protein of 
the Beclin-1 and Bcl-2 complex (Fu et al., 2018).
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Heart Failure 
Autophagy activation as a protective mechanism to prevent 
adverse LV remodeling post-AMI is promising, and the 
beneficial roles of both activation and inhibition of autophagy 
have been demonstrated. Rapamycin and its analogues, 
including everolimus, temsirolimus, deforolimus, and 
zotarolimus are inducers of autophagy through mTOR-
dependent and independent pathways. Although only a few 
of the autophagy modulators have been tested in HF, many 
of them may have therapeutic potential. Treatment with 
everolimus for the first three days post-AMI has been reported 
to preserve LV function and attenuate AMI-induced remodeling 
(Buss et al., 2009). Rapamycin was shown to reduce pressure 
overload cardiac hypertrophy and protected against myocardial 
IRI (McMullen et al., 2004). Gao et al. (2020b) recently 
reported that rapamycin treatment for four weeks reduced CM 
apoptosis and promoted CM autophagy, by regulating crosstalk 
between the mTOR and endoplasmic reticulum (ER) stress 
pathway in chronic HF. Treatment with granulocyte colony-
stimulating factor (G-CSF) significantly improved survival, 
cardiac function, and prevented remodeling in an animal model 
of HF. The cardioprotective effect was accompanied by the 
production and degradation of autophagosomes (Takemura 
et al., 2006) (Table 1). The central role of autophagy in HF 
development has been demonstrated across multiple studies 
where inhibition of autophagy such as miR-22 prevented post-
AMI adverse remodeling along with improved cardiac function 
(Gupta et al., 2016). Traditional Chinese medicine such as 
Yangxinkang Tablet (YXK) has demonstrated cardioprotective 
effects through the inhibition of excessive autophagy. The YXK 
treatment for four weeks improved cardiac function and reduced 
cardiac fibrosis in an in vivo post-AMI model. YXK was shown 
to induce cardioprotection through the abrogation of excessive 
autophagy by reducing LC3-II and Beclin-1 expression during 
IRI (Ren et al., 2020) (Figure 2, Table 1).
     With the perpetual high energy demands of the heart (Page 
and McCallister, 1973; Schaper et al., 1985; Aubert et al., 
2016), mitochondrial dysfunction plays a major role in the 
development of HF (Brown et al., 2017). Decreased mitophagy 
along with mitochondrial dysfunction were reported in HF 
patients and in a HF murine model (TAC-induced). The 
decreased mitophagy was accompanied by an isoform shift 
of AMPK – from AMPKα2 to AMPKα1 (Kim et al., 2012; 
Wang et al., 2018). The overexpression of AMPKα2 in murine 
hearts halted the development of TAC-induced HF through 
increased mitophagy and mitochondrial function whereas 
genetic ablation of AMPKα2 led to exacerbation of TAC-
induced congestive heart failure development, highlighting the 
important role of AMPKα2. Further investigation found that 
AMPKα2 interacts specifically with phosphorylated PINK1 at 
Ser495 in isolated adult mouse CMs following phenylephedrine 
stimulation; after which, the phosphorylated PINK1 recruits 
Parkin to the depolarized mitochondria, initiating the 
PINK1/Parkin mitophagy pathway (Wang et al., 2018). The 
consequent increased cardiac mitophagy results in elimination 
of damaged mitochondria and improvement in mitochondrial 
function. Interestingly, S495A mutation of PINK1 partially 
suppressed AMPKα2 overexpression-induced mitophagy while 
S495D mutation of PINK1 promoted mitophagy following 
phenylephedrine stimulation. Taken together, the study has 
shown a central role of AMPKα2 in the modulation of cardiac 
mitophagy (Wang et al., 2018). In the landmark Empagliflozin 
Cardioascular Outcome Event Trial in Type 2 Diabetes 
Mellitis Patients – Removing Excess Glucose (EMPA-REG 
OUTCOME) clinical trial, empagliflozin, a sodium-glucose 
co-transporter-2 (SGLT-2) inhibitor was shown to reduce 
cardiovascular-related death and hospitalization for HF, but the 

mechanisms underlying this cardiovascular protective effect 
remain undetermined (Zinman et al., 2015). Other clinical 
studies have reported similar cardioprotective effects using 
different SGLT-2 inhibitors – overall ~25% to 40% reductions 
in the risk of hospitalization for HF have been observed (Zinman 
et al., 2015; Neal et al., 2017; Perkovic et al., 2019; Wiviott et 
al., 2019). Interestingly, experimental studies have shown that 
SGLT-2 inhibitors cause the activation of AMPK, SIRT-1, and 
HIF-1α (Chang et al., 2016; Sayour et al., 2019; Lu et al., 2020; 
Ndibalema et al., 2020), and whether modulation of myocardial 
autophagy contributes to the cardioprotective effects of SGLT-2 
inhibitors is unclear.

Summary and future perspectives
Autophagic cell death plays a crucial role in the pathogenesis 
of AMI and the progression to HF, and therefore presents 
a potential therapeutic target for cardioprotection. Despite 
substantial advances in our understanding of the molecular 
aspects of autophagy, the role of this catabolic process in 
determining the fate of AMI and HF remains incompletely 
defined. The importance of autophagy dysregulation in acute 
myocardial IRI and subsequent post-AMI LV remodeling has 
now become apparent. Recent findings have revealed that 
specific autophagic processes may operate in cardiomyocytes 
but their contribution to the pathogenesis of AMI and HF 
requires further investigation. Although not conslusive, most 
experimental studies have reported therapies that upregulate 
autophagy exert cardioprotection against acute myocardial IRI. 
However, in terms of preventing HF, the studies have been 
mixed with therapeutic inhibiton or activation of autophagy both 
reported as being beneficial. In summary, autophagy modulators 
have the therapeutic potential to confer cardioprotection by 
reducing myocardial infarct size and preventing HF, and 
elucidation of the role of autophagy in these cardiac conditions 
should result in the discovery of new treatments for modulating 
autophagy as a strategy for improving outcomes in AMI 
patients.
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